Canreef Aquatics Bulletin Board  

Go Back   Canreef Aquatics Bulletin Board > Vendor Forums > Oceanic Corals > Everything L.E.D.

Reply
 
Thread Tools Display Modes
  #11  
Old 04-15-2010, 05:17 AM
OceanicCorals-Eugene-'s Avatar
OceanicCorals-Eugene- OceanicCorals-Eugene- is offline
Member
 
Join Date: Mar 2010
Location: Langley
Posts: 158
OceanicCorals-Eugene- is on a distinguished road
Default

Quote:
Originally Posted by sphelps View Post
I'd agree that six years would be a reasonable estimate at this time. That being said with the current design of LED fixtures the energy savings will likely never give a payback if you have to essentially replace the fixture every 6 years. That's without my concerns of premature failure which seems fairly likely with what I've seen with current fixtures on the market and the lack of a decent warranty period on newer fixtures.

On the topic of par vs spectrum I don't believe you're correct, just because the spectrum of the bulb changes doesn't mean the par will also change. Certain halide bulb and ballast combinations will last far past the year mark in terms of par while spectrum is a separate issue.
http://reefkeeping.com/issues/2007-04/ac/index.php

I see LED taking more of a role in supplemental lighting in combination with halides or some other type of HID lighting of the future.
PAR decreases as spectrum shift due to a few factors. PAR is a measure of Photosynthetically Active Radiation as bulbs shift in color they generally move either towards the right of the spectrum graph or the left, most bulbs we know move towards the right as can be seen in high kelvin bulbs as they go from blue to white-ish. As this happens PAR values drop as the spectrum is now shifting and you get less of both red/blue spectrum that most corals utilize. The point is even if the PAR is still high enough the corals no longer get there needed spectrum so there colors become dull or brown and none of us like that
__________________
Eugene
Reply With Quote
  #12  
Old 04-15-2010, 05:44 PM
sphelps's Avatar
sphelps sphelps is offline
Member
 
Join Date: May 2006
Location: Lyalta, East of Calgary
Posts: 4,777
sphelps is on a distinguished road
Default

Quote:
Originally Posted by OceanicCorals-Eugene- View Post
PAR decreases as spectrum shift due to a few factors. PAR is a measure of Photosynthetically Active Radiation as bulbs shift in color they generally move either towards the right of the spectrum graph or the left, most bulbs we know move towards the right as can be seen in high kelvin bulbs as they go from blue to white-ish. As this happens PAR values drop as the spectrum is now shifting and you get less of both red/blue spectrum that most corals utilize. The point is even if the PAR is still high enough the corals no longer get there needed spectrum so there colors become dull or brown and none of us like that
Bulbs with a lower K rating typically produce higher PAR because, as you said, it's related to the amount of useful radiation (more of it in lower spectrum bulbs). So if PAR and spectrum wear where directly tied together, as you stated, then with certain bulbs you would see an increase in PAR as the spectrum shifts in the lower K direction. We of course know this isn't the case and the article I linked suggests that the change in par and spectrum overtime are independent not dependent. The decrease in PAR is related more to the decrease in intensity not the shift in spectrum. Of course certain bulbs preform differently so some may be more effected by the spectrum shift but avoiding such bulbs is pretty easy these days with all the information we now have.

So just because an LED doesn't suffer the same spectrum shift as other bulbs doesn't mean the PAR rating will be unaffected, it simply means you won't notice a change in color overtime, only intensity.
Reply With Quote
  #13  
Old 04-15-2010, 06:25 PM
OceanicCorals-Eugene-'s Avatar
OceanicCorals-Eugene- OceanicCorals-Eugene- is offline
Member
 
Join Date: Mar 2010
Location: Langley
Posts: 158
OceanicCorals-Eugene- is on a distinguished road
Default

Quote:
Originally Posted by sphelps View Post
Bulbs with a lower K rating typically produce higher PAR because, as you said, it's related to the amount of useful radiation (more of it in lower spectrum bulbs). So if PAR and spectrum wear where directly tied together, as you stated, then with certain bulbs you would see an increase in PAR as the spectrum shifts in the lower K direction. We of course know this isn't the case and the article I linked suggests that the change in par and spectrum overtime are independent not dependent. The decrease in PAR is related more to the decrease in intensity not the shift in spectrum. Of course certain bulbs preform differently so some may be more effected by the spectrum shift but avoiding such bulbs is pretty easy these days with all the information we now have.

So just because an LED doesn't suffer the same spectrum shift as other bulbs doesn't mean the PAR rating will be unaffected, it simply means you won't notice a change in color overtime, only intensity.
your forgetting those spectrums that were already in the two extreme zones of red and blue, where do they go? Those gets pushed further right into the 800nm (reds) range that we cant see, nor can corals utilize so you lose a good portion of the spectrum that you would if the bulbs were new, so you see a decrease in PAR output. The decrease in PAR is not just about the intensity decrease, losing red spectrum and blue spectrum decrease par values quite a bit as well

The way spectrum works is, too far right, the spectrum isnt used, and same goes for to far let. if the bulbs we had originally were spiked at 450nm and spectrum shift it to 500nm in a year, all that blue light turns into green. Corals dont utilize green light very well and the and useful PAR goes down. Then everything in the 650nm-700nm range literally just disappears from the usefull radiation spectrum and moves into IR range.
__________________
Eugene
Reply With Quote
  #14  
Old 04-15-2010, 06:44 PM
Ron99's Avatar
Ron99 Ron99 is offline
Member
 
Join Date: Dec 2008
Location: South Surrey, BC
Posts: 1,018
Ron99 is on a distinguished road
Default

Quote:
Originally Posted by sphelps View Post
Bulbs with a lower K rating typically produce higher PAR because, as you said, it's related to the amount of useful radiation (more of it in lower spectrum bulbs). So if PAR and spectrum wear where directly tied together, as you stated, then with certain bulbs you would see an increase in PAR as the spectrum shifts in the lower K direction. We of course know this isn't the case and the article I linked suggests that the change in par and spectrum overtime are independent not dependent. The decrease in PAR is related more to the decrease in intensity not the shift in spectrum. Of course certain bulbs preform differently so some may be more effected by the spectrum shift but avoiding such bulbs is pretty easy these days with all the information we now have.

So just because an LED doesn't suffer the same spectrum shift as other bulbs doesn't mean the PAR rating will be unaffected, it simply means you won't notice a change in color overtime, only intensity.
It's actually more complicated then that. The spectral shift of bulbs actually makes a big difference in PAR. First have a look at this figure that shows the peak absorption wavelengths for chlorophyll:



You can see that chlorophyll likes blue and red but not much in between. Now here is a good article on the spectral output of various MH lamps:

http://www.personal.psu.edu/sbj4/aqu...omparison.html

Here is the output of a 10,000K Ushio bulb as an example:



So as that big blue peak not only decreases but shifts over the the right you get less real useable PAR since the green part of the spectrum is less efficient then the blue and red in terms of photosynthesis. The situation is probably even worse with 14,00K and 20,000L bulbs that have more blue and less red in their spectrum. Here's a 20,000K bulb:



So yes, the lack of spectral shift in LEDs is a big advantage in that you stay in the peak output frequencies for photosynthesis. I imagine the T5s etc. put out similar spectrums as some of the MH lamps so the situation is similar.
Reply With Quote
  #15  
Old 04-15-2010, 06:50 PM
Ron99's Avatar
Ron99 Ron99 is offline
Member
 
Join Date: Dec 2008
Location: South Surrey, BC
Posts: 1,018
Ron99 is on a distinguished road
Default

Eugene beat me to it but I had diagrams
Reply With Quote
  #16  
Old 04-15-2010, 06:55 PM
Snaz's Avatar
Snaz Snaz is offline
Member
 
Join Date: Aug 2008
Location: Surrey, BC
Posts: 1,034
Snaz is on a distinguished road
Default

Quote:
Originally Posted by Ron99 View Post
It's actually more complicated then that. The spectral shift of bulbs actually makes a big difference in PAR. First have a look at this figure that shows the peak absorption wavelengths for chlorophyll:
Nice summary with good data and purty pictures. LED FTW
__________________
Reply With Quote
  #17  
Old 04-15-2010, 08:02 PM
OceanicCorals-Eugene-'s Avatar
OceanicCorals-Eugene- OceanicCorals-Eugene- is offline
Member
 
Join Date: Mar 2010
Location: Langley
Posts: 158
OceanicCorals-Eugene- is on a distinguished road
Default

Quote:
Originally Posted by Ron99 View Post
Eugene beat me to it but I had diagrams
your diagram helped explain it better then what i can with words.
__________________
Eugene
Reply With Quote
  #18  
Old 04-16-2010, 01:29 AM
sphelps's Avatar
sphelps sphelps is offline
Member
 
Join Date: May 2006
Location: Lyalta, East of Calgary
Posts: 4,777
sphelps is on a distinguished road
Default

While I applaud your skills of posting diagrams exactly how is posting diagrams of bulbs running with different ballasts relevant to bulb life? I also obtain the skills to post diagrams from articles however I will post ones more relevant to the discussion.

First we can look at the same bulb at 0 months and 17 months:

While the AVERAGE spectrum or CCT will shift in one direction the actual plot does not actually shift but rather decrease in certain areas while increasing in others resulting in a new CCT. Typically the intensity of the blue will decrease but depending on the ballast you use the other areas of the spectrum will actually increase maintaining your total PAR but changing the overall color of the bulb.

Here we can see PAR readings of the same type of bulb over time

Clearly shown is a steady par reading but a decrease in CCT

So we can pretty clearly conclude
Quote:
If the change in spectral output is not a big concern, these lamps can be used for much longer periods of time
So yes the CCT of halide bulbs will change from a result of a change in intensity of different wavelengths but this doesn't mean lower par. Results will vary for different bulbs but proper selection will prevent overly negative results.

The reason you don't see the change in CCT with LEDs is simple. The spectrum is much more defined and concentrated over a smaller area. The intensity simply decreases over time and since it lacks the other wavelengths there is no increase in other sections keeping CCT constant.


So once again the change in PAR is more directly connected to the change of intensity of each wavelength that makes up the Photosynthetically Active Radiation (PAR) and not necessarily the overall change of the Correlated Color Temperature (CCT).

Also there is more to PAR than just red and blue
Quote:
Photosynthetically Usable Radiation, or PUR, is that portion of Photosynthetically Active Radiation (PAR) that is actually absorbed by photosynthetic pigments. Photopigments found in zooxanthellae of corals include chlorophyll a, chlorophyll c2 and peridinin. Typically, these pigments as a group absorb violet, blue and portions of the green wavelengths, as well as most red wavelengths. Since zooxanthellae can 'tweak' pigment ratios in response to light intensity and/or spectrum (within reason!), we can only generalize the wavelengths associated with PUR - for our purposes, PUR for corals and other animals containing zooxanthellae includes bandwidths of 400-550 nm (violet, blue and some green) and 620-700 nm (red).
http://www.advancedaquarist.com/2009/3/review
http://www.advancedaquarist.com/2008/7/aafeature1
http://www.advancedaquarist.com/2006/8/review2
Reply With Quote
  #19  
Old 04-16-2010, 02:05 AM
OceanicCorals-Eugene-'s Avatar
OceanicCorals-Eugene- OceanicCorals-Eugene- is offline
Member
 
Join Date: Mar 2010
Location: Langley
Posts: 158
OceanicCorals-Eugene- is on a distinguished road
Default

Quote:
Originally Posted by sphelps View Post
While I applaud your skills of posting diagrams exactly how is posting diagrams of bulbs running with different ballasts relevant to bulb life? I also obtain the skills to post diagrams from articles however I will post ones more relevant to the discussion.

First we can look at the same bulb at 0 months and 17 months:

While the AVERAGE spectrum or CCT will shift in one direction the actual plot does not actually shift but rather decrease in certain areas while increasing in others resulting in a new CCT. Typically the intensity of the blue will decrease but depending on the ballast you use the other areas of the spectrum will actually increase maintaining your total PAR but changing the overall color of the bulb.

Here we can see PAR readings of the same type of bulb over time

Clearly shown is a steady par reading but a decrease in CCT

So we can pretty clearly conclude


So yes the CCT of halide bulbs will change from a result of a change in intensity of different wavelengths but this doesn't mean lower par. Results will vary for different bulbs but proper selection will prevent overly negative results.

The reason you don't see the change in CCT with LEDs is simple. The spectrum is much more defined and concentrated over a smaller area. The intensity simply decreases over time and since it lacks the other wavelengths there is no increase in other sections keeping CCT constant.


So once again the change in PAR is more directly connected to the change of intensity of each wavelength that makes up the Photosynthetically Active Radiation (PAR) and not necessarily the overall change of the Correlated Color Temperature (CCT).

Also there is more to PAR than just red and blue


http://www.advancedaquarist.com/2009/3/review
http://www.advancedaquarist.com/2008/7/aafeature1
http://www.advancedaquarist.com/2006/8/review2

The posting of a graph is not to show different different ballasts used but the spikes in individual ranges.

I'll agree with you that PARs values change according to the change in intensity of different wavelengths but how is that different with a shift in the spectrum? (might just be my way of reading it that i see them as the same). So would you say that the PAR value decrease is correlated to a decrease in intensity and color spectrum shift not intensity alone? now that you've mentioned that its % of intensity drop in certain spectrums.

Its true that theres more to red and blue in PAR but those are the 2 main spectrums that plants/corals utilize. There is a need for green/yellow but the 2 most utilized spetrums are red and blue thats why i only mentioned the 2.

This discussion is interesting!
__________________
Eugene
Reply With Quote
  #20  
Old 04-16-2010, 03:20 AM
sphelps's Avatar
sphelps sphelps is offline
Member
 
Join Date: May 2006
Location: Lyalta, East of Calgary
Posts: 4,777
sphelps is on a distinguished road
Default

Quote:
Originally Posted by OceanicCorals-Eugene- View Post
So would you say that the PAR value decrease is correlated to a decrease in intensity and color spectrum shift not intensity alone? now that you've mentioned that its % of intensity drop in certain spectrums.
I would say that PAR is obviously related to CCT, different bulbs produce different PAR based on this, but not so much for the change of PAR overtime from bulb wear. A decrease in PAR would be more a result from a decrease in intensity alone as changes in CCT could either increase or decrease PAR or even remain constant.

So I guess to sum up what I'm suggesting is a decrease in par is a result of an overall decrease in intensity while a change in CCT is a result in a shift or varying fluctuation in intensity over different wavelengths. CCT and PAR are not directly related when we're looking at bulb wear.

So when comparing LEDs to halides, LEDs will still suffer from a decrease in intensity and therefore PAR but the rate of reduction of intensity in LEDs is less than halides. The narrow spectrum in LEDs makes the change in CCT is basically unnoticeable while halides suffer greater changes due to the more broad spectrum. So LEDs obviously last longer but halides are cheaper and easier to replace and by selecting bulbs with a more concentrated spectrum in the right areas you can extend you bulb life dramatically.
Reply With Quote
Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump


All times are GMT. The time now is 10:53 AM.


Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.